Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Introduction of the rice CYP714D1 gene into Populus inhibits expression of its homologous genes and promotes growth, biomass production and xylem fibre length in transgenic trees.

Identifieur interne : 002619 ( Main/Exploration ); précédent : 002618; suivant : 002620

Introduction of the rice CYP714D1 gene into Populus inhibits expression of its homologous genes and promotes growth, biomass production and xylem fibre length in transgenic trees.

Auteurs : Cuiting Wang [République populaire de Chine] ; Yan Bao ; Qiuqing Wang ; Hongxia Zhang

Source :

RBID : pubmed:23667043

Descripteurs français

English descriptors

Abstract

The rice (Oryza sativa) OsCYP714D1 gene (also known as EUI) encodes a cytochrome P450 monooxygenase which functions as a gibberellin (GA)-deactivating enzyme, catalysing 16α, 17-epoxidation of non-13-hydroxylated GAs. To understand whether it would also reduce the production of active GAs and depress the growth rate in transgenic trees, we constitutively expressed OsCYP714D1 in the aspen hybrid clone Populus alba×P. berolinensis. Unexpectedly, ectopic expression of OsCYP714D1 in aspen positively regulated the biosynthesis of GAs, including the active GA1 and GA4, leading to promotion of the growth rate and biomass production in transgenic plants. Transgenic lines which showed significant expression of the introduced OsCYP714D1 gene accumulated a higher GA level and produced more numerous and longer xylem fibres than did the wild-type plants. Quantitative real-time PCR indicated that transcription of most homologous PtCYP714 genes was suppressed in these transgenic lines. Therefore, the promoted GA and biomass production in transgenic trees constitutively expressing OsCYP714D1 is probably attributed to the down-regulated expression of the native PtCYP714 homologues involved in the GA biosynthesis pathway, although their precise functions are yet to be further elucidated.

DOI: 10.1093/jxb/ert127
PubMed: 23667043
PubMed Central: PMC3697953


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Introduction of the rice CYP714D1 gene into Populus inhibits expression of its homologous genes and promotes growth, biomass production and xylem fibre length in transgenic trees.</title>
<author>
<name sortKey="Wang, Cuiting" sort="Wang, Cuiting" uniqKey="Wang C" first="Cuiting" last="Wang">Cuiting Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bao, Yan" sort="Bao, Yan" uniqKey="Bao Y" first="Yan" last="Bao">Yan Bao</name>
</author>
<author>
<name sortKey="Wang, Qiuqing" sort="Wang, Qiuqing" uniqKey="Wang Q" first="Qiuqing" last="Wang">Qiuqing Wang</name>
</author>
<author>
<name sortKey="Zhang, Hongxia" sort="Zhang, Hongxia" uniqKey="Zhang H" first="Hongxia" last="Zhang">Hongxia Zhang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23667043</idno>
<idno type="pmid">23667043</idno>
<idno type="doi">10.1093/jxb/ert127</idno>
<idno type="pmc">PMC3697953</idno>
<idno type="wicri:Area/Main/Corpus">002603</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002603</idno>
<idno type="wicri:Area/Main/Curation">002603</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002603</idno>
<idno type="wicri:Area/Main/Exploration">002603</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Introduction of the rice CYP714D1 gene into Populus inhibits expression of its homologous genes and promotes growth, biomass production and xylem fibre length in transgenic trees.</title>
<author>
<name sortKey="Wang, Cuiting" sort="Wang, Cuiting" uniqKey="Wang C" first="Cuiting" last="Wang">Cuiting Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bao, Yan" sort="Bao, Yan" uniqKey="Bao Y" first="Yan" last="Bao">Yan Bao</name>
</author>
<author>
<name sortKey="Wang, Qiuqing" sort="Wang, Qiuqing" uniqKey="Wang Q" first="Qiuqing" last="Wang">Qiuqing Wang</name>
</author>
<author>
<name sortKey="Zhang, Hongxia" sort="Zhang, Hongxia" uniqKey="Zhang H" first="Hongxia" last="Zhang">Hongxia Zhang</name>
</author>
</analytic>
<series>
<title level="j">Journal of experimental botany</title>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cytochrome P-450 Enzyme System (genetics)</term>
<term>Cytochrome P-450 Enzyme System (metabolism)</term>
<term>Down-Regulation (MeSH)</term>
<term>Gene Expression (MeSH)</term>
<term>Gene Expression Regulation, Enzymologic (MeSH)</term>
<term>Gibberellins (biosynthesis)</term>
<term>Oryza (enzymology)</term>
<term>Oryza (genetics)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (enzymology)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Genetically Modified (growth & development)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Trees (enzymology)</term>
<term>Trees (genetics)</term>
<term>Trees (growth & development)</term>
<term>Xylem (genetics)</term>
<term>Xylem (growth & development)</term>
<term>Xylem (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (croissance et développement)</term>
<term>Arbres (enzymologie)</term>
<term>Arbres (génétique)</term>
<term>Cytochrome P-450 enzyme system (génétique)</term>
<term>Cytochrome P-450 enzyme system (métabolisme)</term>
<term>Expression des gènes (MeSH)</term>
<term>Gibbérellines (biosynthèse)</term>
<term>Oryza (enzymologie)</term>
<term>Oryza (génétique)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes codant pour des enzymes (MeSH)</term>
<term>Régulation négative (MeSH)</term>
<term>Végétaux génétiquement modifiés (croissance et développement)</term>
<term>Végétaux génétiquement modifiés (enzymologie)</term>
<term>Végétaux génétiquement modifiés (génétique)</term>
<term>Xylème (croissance et développement)</term>
<term>Xylème (génétique)</term>
<term>Xylème (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Gibberellins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cytochrome P-450 Enzyme System</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cytochrome P-450 Enzyme System</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Gibbérellines</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Arbres</term>
<term>Populus</term>
<term>Végétaux génétiquement modifiés</term>
<term>Xylème</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Arbres</term>
<term>Oryza</term>
<term>Populus</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Oryza</term>
<term>Plants, Genetically Modified</term>
<term>Populus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Oryza</term>
<term>Plants, Genetically Modified</term>
<term>Populus</term>
<term>Trees</term>
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Populus</term>
<term>Trees</term>
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arbres</term>
<term>Cytochrome P-450 enzyme system</term>
<term>Oryza</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Végétaux génétiquement modifiés</term>
<term>Xylème</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cytochrome P-450 enzyme system</term>
<term>Protéines végétales</term>
<term>Xylème</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Down-Regulation</term>
<term>Gene Expression</term>
<term>Gene Expression Regulation, Enzymologic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Expression des gènes</term>
<term>Régulation de l'expression des gènes codant pour des enzymes</term>
<term>Régulation négative</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The rice (Oryza sativa) OsCYP714D1 gene (also known as EUI) encodes a cytochrome P450 monooxygenase which functions as a gibberellin (GA)-deactivating enzyme, catalysing 16α, 17-epoxidation of non-13-hydroxylated GAs. To understand whether it would also reduce the production of active GAs and depress the growth rate in transgenic trees, we constitutively expressed OsCYP714D1 in the aspen hybrid clone Populus alba×P. berolinensis. Unexpectedly, ectopic expression of OsCYP714D1 in aspen positively regulated the biosynthesis of GAs, including the active GA1 and GA4, leading to promotion of the growth rate and biomass production in transgenic plants. Transgenic lines which showed significant expression of the introduced OsCYP714D1 gene accumulated a higher GA level and produced more numerous and longer xylem fibres than did the wild-type plants. Quantitative real-time PCR indicated that transcription of most homologous PtCYP714 genes was suppressed in these transgenic lines. Therefore, the promoted GA and biomass production in transgenic trees constitutively expressing OsCYP714D1 is probably attributed to the down-regulated expression of the native PtCYP714 homologues involved in the GA biosynthesis pathway, although their precise functions are yet to be further elucidated.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23667043</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>01</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1460-2431</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>64</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Journal of experimental botany</Title>
<ISOAbbreviation>J Exp Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Introduction of the rice CYP714D1 gene into Populus inhibits expression of its homologous genes and promotes growth, biomass production and xylem fibre length in transgenic trees.</ArticleTitle>
<Pagination>
<MedlinePgn>2847-57</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jxb/ert127</ELocationID>
<Abstract>
<AbstractText>The rice (Oryza sativa) OsCYP714D1 gene (also known as EUI) encodes a cytochrome P450 monooxygenase which functions as a gibberellin (GA)-deactivating enzyme, catalysing 16α, 17-epoxidation of non-13-hydroxylated GAs. To understand whether it would also reduce the production of active GAs and depress the growth rate in transgenic trees, we constitutively expressed OsCYP714D1 in the aspen hybrid clone Populus alba×P. berolinensis. Unexpectedly, ectopic expression of OsCYP714D1 in aspen positively regulated the biosynthesis of GAs, including the active GA1 and GA4, leading to promotion of the growth rate and biomass production in transgenic plants. Transgenic lines which showed significant expression of the introduced OsCYP714D1 gene accumulated a higher GA level and produced more numerous and longer xylem fibres than did the wild-type plants. Quantitative real-time PCR indicated that transcription of most homologous PtCYP714 genes was suppressed in these transgenic lines. Therefore, the promoted GA and biomass production in transgenic trees constitutively expressing OsCYP714D1 is probably attributed to the down-regulated expression of the native PtCYP714 homologues involved in the GA biosynthesis pathway, although their precise functions are yet to be further elucidated.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Cuiting</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bao</LastName>
<ForeName>Yan</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Qiuqing</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Hongxia</ForeName>
<Initials>H</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>05</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Bot</MedlineTA>
<NlmUniqueID>9882906</NlmUniqueID>
<ISSNLinking>0022-0957</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005875">Gibberellins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9035-51-2</RegistryNumber>
<NameOfSubstance UI="D003577">Cytochrome P-450 Enzyme System</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003577" MajorTopicYN="N">Cytochrome P-450 Enzyme System</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015536" MajorTopicYN="N">Down-Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="Y">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015971" MajorTopicYN="N">Gene Expression Regulation, Enzymologic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005875" MajorTopicYN="N">Gibberellins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052584" MajorTopicYN="N">Xylem</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Aspen</Keyword>
<Keyword MajorTopicYN="N">OsCYP714D1</Keyword>
<Keyword MajorTopicYN="N">Populus</Keyword>
<Keyword MajorTopicYN="N">biomass</Keyword>
<Keyword MajorTopicYN="N">gibberellin</Keyword>
<Keyword MajorTopicYN="N">transgenic plants.</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>5</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>5</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>1</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23667043</ArticleId>
<ArticleId IdType="pii">ert127</ArticleId>
<ArticleId IdType="doi">10.1093/jxb/ert127</ArticleId>
<ArticleId IdType="pmc">PMC3697953</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2002 Apr 18;416(6882):701-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11961544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11638-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11027362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Sep;20(9):2447-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18827182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Jul;67(2):342-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21457373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48:431-460</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 May;13(5):999-1010</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11340177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr B Analyt Technol Biomed Life Sci. 2011 Apr 15;879(13-14):938-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21444253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2000 Dec;5(12):523-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11120474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2004;55:197-223</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15377219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1988 Mar;86(3):857-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2000 Jul;18(7):784-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10888850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4698-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10200325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Jul 15;400(6741):256-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10421366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2000 Feb;53(4):519-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10731033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002;14 Suppl:S61-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Mar;22(3):623-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20354195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1980 Nov;58(6):257-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24301503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):9043-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12077303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2011 Nov;30(11):2037-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21717184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jul;132(3):1283-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2003 Aug;21(8):909-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12858182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Apr;134(4):1642-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15075394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2002 Mar;59(6):679-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11867101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Sep;67(5):805-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21569133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Jul;19(1):65-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10417727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jul;19(7):2140-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17644730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Mar 21;299(5614):1896-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12649483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2000 Mar;41(3):251-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10805587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1958 Jun 21;181(4625):1744-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13566135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Nov;52(3):499-511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17825053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1979 Apr;63(4):609-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16660777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Feb;18(2):442-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16399803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Jun;102(2):379-386</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12231829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jan;19(1):32-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17220201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2006;343:43-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16988332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Jan;15(1):151-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12509528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 May;138(1):243-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15821147</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bao, Yan" sort="Bao, Yan" uniqKey="Bao Y" first="Yan" last="Bao">Yan Bao</name>
<name sortKey="Wang, Qiuqing" sort="Wang, Qiuqing" uniqKey="Wang Q" first="Qiuqing" last="Wang">Qiuqing Wang</name>
<name sortKey="Zhang, Hongxia" sort="Zhang, Hongxia" uniqKey="Zhang H" first="Hongxia" last="Zhang">Hongxia Zhang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Wang, Cuiting" sort="Wang, Cuiting" uniqKey="Wang C" first="Cuiting" last="Wang">Cuiting Wang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002619 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002619 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23667043
   |texte=   Introduction of the rice CYP714D1 gene into Populus inhibits expression of its homologous genes and promotes growth, biomass production and xylem fibre length in transgenic trees.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23667043" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020